Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making
Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth powe...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.36 (2), p.1599-1614 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth power of the membership degree and qth power of the non-membership degree is less than or equal to one. This characteristic makes q-ROFS more powerful and useful than intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS). The aim of this paper is to develop some aggregation operators for fusing q-rung orthopair fuzzy information. As the Muirhead mean (MM) is considered as a useful aggregation technology which can capture interrelationships among all aggregated arguments, we extend the MM to q-rung orthopair fuzzy environment and propose a family of q-rung orthopair fuzzy Muirhead mean operators. Moreover, we investigate some desirable properties and special cases of the proposed operators. Further, we apply the proposed operators to solve multi-attribute group decision making (MAGDM) problems. Finally, a numerical instance as well as some comparative analysis are provided to demonstrate the validity and superiorities of the proposed method. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-18607 |