Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145
Because of unsatisfactory treatment options for prostate cancer (CaP) there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. We have shown previously that panduratin A...
Gespeichert in:
Veröffentlicht in: | Carcinogenesis (New York) 2006-07, Vol.27 (7), p.1454-1464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of unsatisfactory treatment options for prostate cancer (CaP) there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. We have shown previously that panduratin A isolated from the extract of Kaempferia pandurata (Zingiberaceae) is a strong inhibitor of cyclooxygenase-2 in RAW264.7 cells and induces apoptosis in HT-29 cells. In the present study, we provide evidence that panduratin A treatment to androgen-independent human CaP cells PC3 and DU145 result in a time and dose-dependent inhibition of cell growth with an IC50 of 13.5–14 μM and no to little effect on normal human prostate epithelial cells. To define the mechanism of these anti-proliferative effects of panduratin A, we determined its effect on critical molecular events known to regulate the cell cycle and the apoptotic machinery. Annexin V/propidium iodide staining provided the evidence for the induction of apoptosis which was further confirmed by the observation of cleavage of poly (ADP-ribose) polymerase and degradation of acinus. Panduratin A treatment to cells was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax:Bcl-2, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Panduratin A-mediated apoptosis was accompanied with upregulation of Fas death receptor and TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, cell cycle analysis using flow cytometry showed that panduratin A treatment of cells resulted in a G2/M arrest in a dose-dependent manner. The immunoblot analysis data revealed that in both cell lines panduratin A treatment resulted in a dose-dependent (i) induction of p21WAF1/Cip1 and p27Kip1, (ii) downregulation of cdks 2, 4 and 6 and (iii) decrease in cyclins D1 and E. These findings suggest that panduratin A may be an effective chemopreventive or therapeutic agent against CaP. |
---|---|
ISSN: | 0143-3334 1460-2180 |
DOI: | 10.1093/carcin/bgi348 |