Quick-RRT: Triangular inequality-based implementation of RRT with improved initial solution and convergence rate

•Sampling-based algorithms are commonly used in motion planning problems.•The RRT* algorithm incrementally builds a tree of motion to find a solution.•Taking a shortcut to the ancestry increases the convergence rate to the optimal.•Combination with sampling strategies further improves the performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2019-06, Vol.123, p.82-90
Hauptverfasser: Jeong, In-Bae, Lee, Seung-Jae, Kim, Jong-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Sampling-based algorithms are commonly used in motion planning problems.•The RRT* algorithm incrementally builds a tree of motion to find a solution.•Taking a shortcut to the ancestry increases the convergence rate to the optimal.•Combination with sampling strategies further improves the performance. The Rapidly-exploring Random Tree (RRT) algorithm is a popular algorithm in motion planning problems. The optimal RRT (RRT*) is an extended algorithm of RRT, which provides asymptotic optimality. This paper proposes Quick-RRT* (Q-RRT*), a modified RRT* algorithm that generates a better initial solution and converges to the optimal faster than RRT*. Q-RRT* enlarges the set of possible parent vertices by considering not only a set of vertices contained in a hypersphere, as in RRT*, but also their ancestry up to a user-defined parameter, thus, resulting in paths with less cost than those of RRT*. It also applies a similar technique to the rewiring procedure resulting in acceleration of the tendency that near vertices share common parents. Since the algorithm proposed in this paper is a tree extending algorithm, it can be combined with other sampling strategies and graph-pruning algorithms. The effectiveness of Q-RRT* is demonstrated by comparing the algorithm with existing algorithms through numerical simulations. It is also verified that the performance can be further enhanced when combined with other sampling strategies.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2019.01.032