Designing Carbon/Oxygen Ratios of Graphene Oxide Membranes for Proton Exchange Membrane Fuel Cells

Graphene oxide (GO), which is the oxidized form of graphene, has holes and functional groups on the surface and thus has high potential to be used as an electrochemical transport channel material. In this study, differently modified GO membranes are applied as electrolytes of proton exchange membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2019-01, Vol.2019 (2019), p.1-9
Hauptverfasser: Lee, Wonyoung, Lee, Changgu, Liu, Renlong, Ahn, Minwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene oxide (GO), which is the oxidized form of graphene, has holes and functional groups on the surface and thus has high potential to be used as an electrochemical transport channel material. In this study, differently modified GO membranes are applied as electrolytes of proton exchange membrane fuel cells (PEMFCs) with controlled carbon/oxygen ratios. The critical and desired properties of the electrolyte, such as electron conductivity, proton conductivity, interfacial reactivity, and cell performance are evaluated in identical platinum-sputtered model electrodes. Among them, with the help of an increased concentration of oxygen-containing groups, a GO membrane with a low carbon/oxygen ratio shows a 2.9-fold improved maximum power density and advanced electrochemical properties compared with the pristine GO membrane. The characterization of GO suggests that the redox state of the membrane is an important factor for controlling the proton conductivity, interfacial reactivity, and maximum power density of PEMFCs.
ISSN:1687-4110
1687-4129
DOI:10.1155/2019/6464713