Large solutions to the p-Laplacian for large p
In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Δ p u = u q in Ω, u = +∞ on , where q > p − 1. We take q = q ( p ) and analyze the limit of u p as p → ∞. We find that when q ( p )/ p → Q the behaviour strongly depends on Q . If 1 < Q...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2008-02, Vol.31 (2), p.187-204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we consider the behaviour for large values of
p
of the unique positive weak solution
u
p
to Δ
p
u
=
u
q
in Ω,
u
= +∞ on
, where
q
>
p
− 1. We take
q
=
q
(
p
) and analyze the limit of
u
p
as
p
→ ∞. We find that when
q
(
p
)/
p
→
Q
the behaviour strongly depends on
Q
. If 1 <
Q
< ∞ then solutions converge uniformly in compacts to a viscosity solution of
with
u
= +∞ on
. If
Q
= 1 then solutions go to ∞ in the whole Ω and when
Q
= ∞ solutions converge to 1 uniformly in compact subsets of Ω, hence the boundary blow-up is lost in the limit. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-007-0109-6 |