Relaxation of the curve shortening flow via the parabolic Ginzburg -Landau equation

In this paper we study how to find solutions to the parabolic Ginzburg–Landau equation that as have as interface a given curve that evolves under curve shortening flow. Moreover, for compact embedded curves we find a uniform profile for the solution up the extinction time of the curve. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2008-03, Vol.31 (3), p.359-386
1. Verfasser: Trumper, Mariel Sáez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study how to find solutions to the parabolic Ginzburg–Landau equation that as have as interface a given curve that evolves under curve shortening flow. Moreover, for compact embedded curves we find a uniform profile for the solution up the extinction time of the curve. We show that after the extinction time the solution converges uniformly to a constant.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-007-0118-5