Role of p21WAF1/CIP1 as an attenuator of both proliferative and drug-induced apoptotic signals in BCR-ABL-transformed hematopoietic cells

The constitutive tyrosine kinase activity of the BCR-ABL fusion protein plays a crucial role in the pathogenesis of chronic myeloid leukemia and promotes growth factor-independent survival of hematopoietic cells. In 32D cells, expression levels of retrovirally transduced BCR-ABL were positively corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of hematology 2008-03, Vol.87 (3), p.183-193
Hauptverfasser: Forster, Karin, Obermeier, Axel, Mitina, Olga, Simon, Nicola, Warmuth, Markus, Krause, Günter, Hallek, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The constitutive tyrosine kinase activity of the BCR-ABL fusion protein plays a crucial role in the pathogenesis of chronic myeloid leukemia and promotes growth factor-independent survival of hematopoietic cells. In 32D cells, expression levels of retrovirally transduced BCR-ABL were positively correlated with the levels of the cell cycle regulator protein p21, and this upregulation of p21 expression depended on the kinase activity of BCR-ABL. To assess the role of p21 on BCR-ABL-positive hematopoietic cells, we compared proliferation and drug-induced apoptosis in bone marrow (BM) cells from wild-type and p21 knockout mice after retroviral transfer of the BCR-ABL fusion gene. As compared with wild-type cells, p21 knockout cells showed increased proliferation, suggesting that p21 acted as an attenuator of BCR-ABL-mediated cell proliferation. In marked contrast, deletion of p21 promoted apoptosis induction by imatinib and taxol in BCR-ABL -transformed BM cells. These findings demonstrate that p21 has a dual function in BCR-ABL-transformed murine BM cells: It attenuates the effects of two apparently opposed phenomena such as BCR-ABL-mediated cell proliferation and drug-induced apoptosis. This dual function of p21 calls for a cautious evaluation of the suitability of p21 as a secondary target in anticancer therapy.
ISSN:0939-5555
1432-0584
DOI:10.1007/s00277-007-0400-9