Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions
We construct heteroclinic the global minimizers of a nonlocal free energy functional that van der Waals derived in 1893. We study the case where the nonlocality satisfies only a weakened type of ellipticity, which precludes the use of comparison methods. In the interesting case when the local part o...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2005-11, Vol.24 (3), p.261-281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct heteroclinic the global minimizers of a nonlocal free energy functional that van der Waals derived in 1893. We study the case where the nonlocality satisfies only a weakened type of ellipticity, which precludes the use of comparison methods. In the interesting case when the local part of the energy is nonconvex, we construct a classical the global minimizer by studying a relaxed functional corresponding to the convexification of the local part and exclude the possibility of minimizers of the relaxed functional having rapid oscillations. We also construct examples where the global minimizer is not monotonic.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-005-0308-y |