Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth

Let L(x, ):RN RN R be a Borelian function and let (P) be the problem of minimizing b a L(y(t), y (t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufcient conditions that weaken the classical superlinear growth assumption to ensure that the minima of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2007-05, Vol.29 (1), p.99-117
Hauptverfasser: Mariconda, Carlo, Treu, Giulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L(x, ):RN RN R be a Borelian function and let (P) be the problem of minimizing b a L(y(t), y (t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufcient conditions that weaken the classical superlinear growth assumption to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w.r. to or continuity of L. [PUBLICATION ABSTRACT]
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-006-0059-4