Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth
Let L(x, ):RN RN R be a Borelian function and let (P) be the problem of minimizing b a L(y(t), y (t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufcient conditions that weaken the classical superlinear growth assumption to ensure that the minima of...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2007-05, Vol.29 (1), p.99-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let L(x, ):RN RN R be a Borelian function and let (P) be the problem of minimizing b a L(y(t), y (t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufcient conditions that weaken the classical superlinear growth assumption to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w.r. to or continuity of L. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-006-0059-4 |