An evolution of minimal surfaces with Plateau condition
Chang and Liu continue their study on the heat ow for the minimal surface with Plateau boundary condition. The aim in introducing the heat ow is to establish the Morse theory, the minimax methods for minimal surfaces spanned by a curve. The heat ow is dened to be a solution of a parabolic variationa...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2004-01, Vol.19 (2), p.117-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chang and Liu continue their study on the heat ow for the minimal surface with Plateau boundary condition. The aim in introducing the heat ow is to establish the Morse theory, the minimax methods for minimal surfaces spanned by a curve. The heat ow is dened to be a solution of a parabolic variational inequality. It looks like a heat ow for harmonic maps with a variational inequality type boundary condition. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-003-0205-1 |