An evolution of minimal surfaces with Plateau condition

Chang and Liu continue their study on the heat ow for the minimal surface with Plateau boundary condition. The aim in introducing the heat ow is to establish the Morse theory, the minimax methods for minimal surfaces spanned by a curve. The heat ow is dened to be a solution of a parabolic variationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2004-01, Vol.19 (2), p.117-163
Hauptverfasser: Chang, Kung-ching, Liu, Jia-quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chang and Liu continue their study on the heat ow for the minimal surface with Plateau boundary condition. The aim in introducing the heat ow is to establish the Morse theory, the minimax methods for minimal surfaces spanned by a curve. The heat ow is dened to be a solution of a parabolic variational inequality. It looks like a heat ow for harmonic maps with a variational inequality type boundary condition.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-003-0205-1