On Johnson's Two-Machine Flow Shop with Random Processing Times
A set of n jobs is to be processed by two machines in series that are separated by an infinite waiting room; each job requires a (known) fixed amount of processing from each machine. In a classic paper, Johnson gave a simple rule for ordering of the set of jobs to minimize the time until the system...
Gespeichert in:
Veröffentlicht in: | Operations research 1986-01, Vol.34 (1), p.130-136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set of n jobs is to be processed by two machines in series that are separated by an infinite waiting room; each job requires a (known) fixed amount of processing from each machine. In a classic paper, Johnson gave a simple rule for ordering of the set of jobs to minimize the time until the system becomes empty, i.e., the makespan. This paper studies a stochastic generalization of this problem in which job processing times are independent random variables. Our main result is a sufficient condition on the processing time distributions that implies that the makespan becomes stochastically smaller when two adjacent jobs in a given job sequence are interchanged. We also give an extension of the main result to job shops. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.34.1.130 |