The Size of the Lerch Zeta-Function at Places Symmetric with Respect to the Line ℜ(s) = 1/2
Let ζ( s ) be the Riemann zeta-function. If t ⩾ 6.8 and σ > 1/2, then it is known that the inequality |ζ(1 − s )| > |ζ( s )| is valid except at the zeros of ζ( s ). Here we investigate the Lerch zeta-function L ( λ , α , s ) which usually has many zeros off the critical line and it is expected...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2019-03, Vol.69 (1), p.25-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ζ(
s
) be the Riemann zeta-function. If
t
⩾ 6.8 and
σ
> 1/2, then it is known that the inequality |ζ(1 −
s
)| > |ζ(
s
)| is valid except at the zeros of ζ(
s
). Here we investigate the Lerch zeta-function
L
(
λ
,
α
,
s
) which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters
λ
=
α
it is still possible to obtain a certain version of the inequality |
L
(
λ
,
λ
,
1
−
s
¯
)| > |
L
(
λ
,
λ
, s)|. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2018.0149-17 |