The Size of the Lerch Zeta-Function at Places Symmetric with Respect to the Line ℜ(s) = 1/2

Let ζ( s ) be the Riemann zeta-function. If t ⩾ 6.8 and σ > 1/2, then it is known that the inequality |ζ(1 − s )| > |ζ( s )| is valid except at the zeros of ζ( s ). Here we investigate the Lerch zeta-function L ( λ , α , s ) which usually has many zeros off the critical line and it is expected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2019-03, Vol.69 (1), p.25-37
Hauptverfasser: Garunkštis, Ramūnas, Grigutis, Andrius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ζ( s ) be the Riemann zeta-function. If t ⩾ 6.8 and σ > 1/2, then it is known that the inequality |ζ(1 − s )| > |ζ( s )| is valid except at the zeros of ζ( s ). Here we investigate the Lerch zeta-function L ( λ , α , s ) which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters λ = α it is still possible to obtain a certain version of the inequality | L ( λ , λ , 1 − s ¯ )| > | L ( λ , λ , s)|.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2018.0149-17