On induced colourful paths in triangle-free graphs
Given a graph G=(V,E) whose vertices have been properly coloured, we say that a path in G is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai–Roy–Vitaver Theorem that every properly coloured graph contains a colourful path on χ(G) vertices. We explore a...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-02, Vol.255, p.109-116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a graph G=(V,E) whose vertices have been properly coloured, we say that a path in G is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai–Roy–Vitaver Theorem that every properly coloured graph contains a colourful path on χ(G) vertices. We explore a conjecture that states that every properly coloured triangle-free graph G contains an induced colourful path on χ(G) vertices and prove its correctness when the girth of G is at least χ(G). Recent work on this conjecture by Gyárfás and Sárközy, and Scott and Seymour has shown the existence of a function f such that if χ(G)≥f(k), then an induced colourful path on k vertices is guaranteed to exist in any properly coloured triangle-free graph G. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.08.004 |