Modulating the photocatalytic activity of TiO2 (P25) with lanthanum and graphene oxide

[Display omitted] •The photocatalytic activity modulation concept was demonstrated.•La-doped TiO2 may be used as a tool for suppressing the photoactivity.•La inhibited particle agglomeration and increased the thermal stability of anatase.•The addition of GO reduced charge recombination and improved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. A, Chemistry. Chemistry., 2019-03, Vol.372, p.1-10
Hauptverfasser: Coelho, Letícya Laís, Hotza, Dachamir, Estrella, Arthur Senra, de Amorim, Suelen Maria, Li Puma, Gianluca, Moreira, Regina de Fatima Peralta Muniz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •The photocatalytic activity modulation concept was demonstrated.•La-doped TiO2 may be used as a tool for suppressing the photoactivity.•La inhibited particle agglomeration and increased the thermal stability of anatase.•The addition of GO reduced charge recombination and improved adsorption ability. The modulation and tuning of the photocatalytic activity of commercial titanium dioxide (TiO2) P25 nanoparticles is demonstrated through the incorporation of lanthanum (La) and/or graphene oxide (GO). These composite materials, which could have applications in commercial products, were prepared by a two-step hydrothermal method from the corresponding precursors. The effect of La (0.05–2 mol%) and GO (5 m%) content on the crystal structure, morphology and photocatalytic activity of TiO2 was investigated by XRS, SEM, EDS, TEM, UV–vis DRS, point of zero charge, photoluminescence and the decolorization of methylene blue. Lanthanum modified the recombination rate of the photogenerated electron-hole charges on TiO2 by inducing an increase in the structural defects, which resulted in a significant suppression, up to 90%, of the photocatalytic activity in the UVA light region. In contrast, the addition of GO enhanced the photocatalytic activity of TiO2. Materials with tuned intermediate photoactivity within the entire range from high to very low were prepared by dosing appropriate amounts of La and GO species. The strategy of combining La and GO represents a useful and simple method for tuning or for suppressing the photocatalytic activity of TiO2 under UVA light irradiation in materials and consumer products using TiO2.
ISSN:1010-6030
1873-2666
DOI:10.1016/j.jphotochem.2018.11.048