Development of biocompatible 1D CuO nanoneedles and their potential for sensitive, mass-based detection of anti-tuberculosis drugs
Unique physical and chemical properties make 1D nanomaterials very attractive and their window of applications is broadened by the addition of biocompatible materials. Similarly, the massive side effects associated with the frequent use of antibiotics make it crucial to analyze the quantity and dete...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2019-09, Vol.9 (6), p.1341-1351 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unique physical and chemical properties make 1D nanomaterials very attractive and their window of applications is broadened by the addition of biocompatible materials. Similarly, the massive side effects associated with the frequent use of antibiotics make it crucial to analyze the quantity and detect even the subservient amounts of antibiotics in vivo following their administration to patients. The present study describes the one-pot solvothermal approach to produce 1D CuO nanoneedles. Microscopic investigations revealed the presence of nanoneedles of about 8–15 nm in size with negative surface charge (− 30.51 mV). These structures were explored for the targeted detection of the anti-tubercular agent rifampicin. This developed interface showed excellent sensitivity, with the limit of detection as low as 9.4 nM and the limit of quantification as 20 nM. This sensor exhibited good selectivity towards the structural analogs (rifabutene, rifapentine) of the analyte. This study represents the potential of 1D nanomaterial in biomedical applications such as the development of interfaces for online monitoring. |
---|---|
ISSN: | 2190-5509 2190-5517 |
DOI: | 10.1007/s13204-019-01003-7 |