Off-target Movement of DGA and BAPMA Dicamba to Sensitive Soybean
It is well established that dicamba can cause severe injury to soybean that is not resistant to dicamba. Dicamba-resistant (DR) cotton became available in 2015, followed by DR soybean in 2016; in late 2016 came the release of new dicamba formulations approved for topical use in cotton and soybeans....
Gespeichert in:
Veröffentlicht in: | Weed technology 2019-02, Vol.33 (1), p.51-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well established that dicamba can cause severe injury to soybean that is not resistant to dicamba. Dicamba-resistant (DR) cotton became available in 2015, followed by DR soybean in 2016; in late 2016 came the release of new dicamba formulations approved for topical use in cotton and soybeans. Until this approval, use of dicamba was limited to primarily corn, small grains, range and pasture, and eco-fallow acres. Hence, studies were conducted in 2015 and 2016 to examine off-target movement of two dicamba formulations using non-DR soybean as a bio-indicator. Diglycolamine (DGA) and N,N-Bis(3-aminopropyl)methylamine (BAPMA) dicamba were applied simultaneously at 560 g ae ha–1 in the center of two side-byside 8-ha fields to vegetative glufosinate-resistant soybean. On the same day, a rate response experiment was established encompassing nine different dicamba rates of each formulation. Results from the rate response experiment indicate that soybean is equally sensitive to DGA and BAPMA dicamba. In 2015, a rain event occurring 6 to 8 h after application of the large drift trial probably limited off-target movement by incorporating some of the herbicide into the soil. As a result, secondary drift was less in 2015 than in 2016. However, minimal secondary injury ( |
---|---|
ISSN: | 0890-037X 1550-2740 |
DOI: | 10.1017/wet.2018.121 |