The general position problem on Kneser graphs and on some graph operations
A vertex subset \(S\) of a graph \(G\) is a general position set of \(G\) if no vertex of \(S\) lies on a geodesic between two other vertices of \(S\). The cardinality of a largest general position set of \(G\) is the general position number (gp-number) \({\rm gp}(G)\) of \(G\). The gp-number is det...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vertex subset \(S\) of a graph \(G\) is a general position set of \(G\) if no vertex of \(S\) lies on a geodesic between two other vertices of \(S\). The cardinality of a largest general position set of \(G\) is the general position number (gp-number) \({\rm gp}(G)\) of \(G\). The gp-number is determined for some families of Kneser graphs, in particular for \(K(n,2)\) and \(K(n,3)\). A sharp lower bound on the gp-number is proved for Cartesian products of graphs. The gp-number is also determined for joins of graphs, coronas over graphs, and line graphs of complete graphs. |
---|---|
ISSN: | 2331-8422 |