Estimation of the finite population distribution function using a global penalized calibration method
Auxiliary information x is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function F y ( t ) when x is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator...
Gespeichert in:
Veröffentlicht in: | Advances in statistical analysis : AStA : a journal of the German Statistical Society 2019-03, Vol.103 (1), p.1-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Auxiliary information
x
is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function
F
y
(
t
)
when
x
is available for all units in the population and related to the study variable
y
by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of
F
y
(
t
)
with the weights satisfying benchmark constraints on the fitted values distribution function
F
^
y
^
=
F
y
^
on a set of fixed values of
t
can be found in the literature. Alternatively, our proposal
F
^
y
ω
seeks an estimator taking into account a global distance
D
(
F
^
y
^
ω
,
F
y
^
)
between
F
^
y
^
ω
and
F
y
^
,
and a penalty parameter
α
that assesses the importance of this term in the objective function. The weights are explicitly obtained for the
L
2
distance and conditions are given so that
F
^
y
ω
to be a distribution function. In this case
F
^
y
ω
can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of
F
^
y
ω
, for a fixed
α
, are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive. |
---|---|
ISSN: | 1863-8171 1863-818X |
DOI: | 10.1007/s10182-018-0321-z |