Dissolution of the Alpha Phase in Ti-6Al-4V During Isothermal and Continuous Heat Treatment

The kinetics of the dissolution of the equiaxed alpha phase into the beta matrix in Ti-6Al-4V were established and modeled for both isothermal (constant temperature) and transient/continuous heating conditions. For the isothermal experiments, samples were solution treated at a subtransus temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-05, Vol.50 (5), p.2356-2370
Hauptverfasser: Semiatin, S. L., Obstalecki, M., Payton, E. J., Pilchak, A. L., Shade, P. A., Levkulich, N. C., Shank, J. M., Pagan, D. C., Zhang, F., Tiley, J. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kinetics of the dissolution of the equiaxed alpha phase into the beta matrix in Ti-6Al-4V were established and modeled for both isothermal (constant temperature) and transient/continuous heating conditions. For the isothermal experiments, samples were solution treated at a subtransus temperature to equilibrate the microstructure followed by rapid, direct-resistance heating to a temperature either 25 K or 78 K (25 °C or 78 °C) above the equilibrium beta transus and held for times ranging from 1 to 32 seconds. Dissolution behavior under transient conditions was determined in-situ using an indirect-resistance furnace and X-ray (synchrotron) source; these trials comprised a similar initial subtransus solution heat treatment followed by continuous heating at a constant rate in the range between 15 and 135 K/min (15 and 135 °C/min) to a temperature lying 25 K (25 °C) above the transus. Measurements of the temporal evolution of the volume fraction of alpha were interpreted using numerical simulations based on the Whelan dissolution model modified to treat a distribution of particle sizes and the possible interaction of the concentration gradients developed around adjacent particles; i.e ., soft impingement. The isothermal dissolution measurements were bounded by predictions from simulations with and without the soft-impingement assumption. Similar trends were found for continuous-heating behavior. In particular, slow or fast heating-rate observations were replicated by simulation predictions with or without the soft-impingement constraint, respectively.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-019-05164-6