Bayesian inference and uncertainty quantification for image reconstruction with Poisson data

We provide a complete framework for performing infinite-dimensional Bayesian inference and uncertainty quantification for image reconstruction with Poisson data. In particular, we address the following issues to make the Bayesian framework applicable in practice. We first introduce a positivity-pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Zhou, Qingping, Yu, Tengchao, Zhang, Xiaoqun, Li, Jinglai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a complete framework for performing infinite-dimensional Bayesian inference and uncertainty quantification for image reconstruction with Poisson data. In particular, we address the following issues to make the Bayesian framework applicable in practice. We first introduce a positivity-preserving reparametrization, and we prove that under the reparametrization and a hybrid prior, the posterior distribution is well-posed in the infinite dimensional setting. Second we provide a dimension-independent MCMC algorithm, based on the preconditioned Crank-Nicolson Langevin method, in which we use a primal-dual scheme to compute the offset direction. Third we give a method combining the model discrepancy method and maximum likelihood estimation to determine the regularization parameter in the hybrid prior. Finally we propose to use the obtained posterior distribution to detect artifacts in a recovered image. We provide an example to demonstrate the effectiveness of the proposed method.
ISSN:2331-8422