QNoC: QoS architecture and design process for network on chip

We define Quality of Service (QoS) and cost model for communications in Systems on Chip (SoC), and derive related Network on Chip (NoC) architecture and design process. SoC inter-module communication traffic is classified into four classes of service: signaling (for inter-module control signals); re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems architecture 2004-02, Vol.50 (2), p.105-128
Hauptverfasser: Bolotin, Evgeny, Cidon, Israel, Ginosar, Ran, Kolodny, Avinoam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define Quality of Service (QoS) and cost model for communications in Systems on Chip (SoC), and derive related Network on Chip (NoC) architecture and design process. SoC inter-module communication traffic is classified into four classes of service: signaling (for inter-module control signals); real-time (representing delay-constrained bit streams); RD/WR (modeling short data access) and block-transfer (handling large data bursts). Communication traffic of the target SoC is analyzed (by means of analytic calculations and simulations), and QoS requirements (delay and throughput) for each service class are derived. A customized Quality-of-Service NoC (QNoC) architecture is derived by modifying a generic network architecture. The customization process minimizes the network cost (in area and power) while maintaining the required QoS. The generic network is based on a two-dimensional planar mesh and fixed shortest path ( X– Y based) multi-class wormhole routing. Once communication requirements of the target SoC are identified, the network is customized as follows: The SoC modules are placed so as to minimize spatial traffic density, unnecessary mesh links and switching nodes are removed, and bandwidth is allocated to the remaining links and switches according to their relative load so that link utilization is balanced. The result is a low cost customized QNoC for the target SoC which guarantees that QoS requirements are met.
ISSN:1383-7621
1873-6165
DOI:10.1016/j.sysarc.2003.07.004