Computational Complexity for the Problem of Optimal Intersection of Straight Line Segments by Disks

Computational complexity and exact polynomial algorithms are reported for the problem of stabbing a set of straight line segments with a least cardinality set of disks of fixed radii r > 0, where the set of segments forms a straight line drawing G = ( V,E ) of a plane graph without edge crossings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2018-12, Vol.303 (Suppl 1), p.146-155
1. Verfasser: Kobylkin, K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational complexity and exact polynomial algorithms are reported for the problem of stabbing a set of straight line segments with a least cardinality set of disks of fixed radii r > 0, where the set of segments forms a straight line drawing G = ( V,E ) of a plane graph without edge crossings. Similar geometric problems arise in network security applications (Agarwal et al., 2013). We establish the strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs, and other subgraphs (which are often used in network design) for r ∈ [ d min , ηd max ] and some constant η , where d max and d min are the Euclidean lengths of the longest and shortest graph edges, respectively.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543818090158