Measured and simulated analysis of a model rocket
A comparison between two types of sensors and two types of simulation software are investigated here for a student built rocket. Many students use an open source software package called OpenRocket which uses empirical aerodynamics based on the shape of the rocket. This software is compared to the st...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1397-1411 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comparison between two types of sensors and two types of simulation software are investigated here for a student built rocket. Many students use an open source software package called OpenRocket which uses empirical aerodynamics based on the shape of the rocket. This software is compared to the standard set of rigid body dynamic equations using coefficients for the aerodynamics based on windtunnel and computational fluid dynamics tests. During experimentation two sensors are used and price and resolution is compared. The first sensor is a turn-key sensor called the TeleMega which has many features such as telemetry and on board data logging. In an effort to reduce costs, the Arduino Mega platform has been augmented with a custom made shield capable of measuring Global Positioning System (GPS), angular velocity, and attitude information with on board data logging as well. Although this sensor has limited functionality, the cost is substantially reduced. It is shown that all sensors and simulation software have their strengths and weaknesses with appropriate usage for each. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/0954410017752730 |