11K Hands: Gender recognition and biometric identification using a large dataset of hand images
Human hand not only possesses distinctive feature for gender information, it is also considered one of the primary biometric traits used to identify a person. Unlike face images, which are usually unconstrained, an advantage of hand images is they are usually captured under a controlled position. Mo...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-08, Vol.78 (15), p.20835-20854 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human hand not only possesses distinctive feature for gender information, it is also considered one of the primary biometric traits used to identify a person. Unlike face images, which are usually unconstrained, an advantage of hand images is they are usually captured under a controlled position. Most state-of-the-art methods, that rely on hand images for gender recognition or biometric identification, employ handcrafted features to train an off-the-shelf classifier or be used by a similarity metric for biometric identification. In this work, we propose a deep learning-based method to tackle the gender recognition and biometric identification problems. Specifically, we design a two-stream convolutional neural network (CNN) which accepts hand images as input and predicts gender information from these hand images. This trained model is then used as a feature extractor to feed a set of support vector machine classifiers for biometric identification. As part of this effort, we propose a large dataset of human hand images,
11K Hands
, which contains dorsal and palmar sides of human hand images with detailed ground-truth information for different problems including gender recognition and biometric identification. By leveraging thousands of hand images, we could effectively train our CNN-based model achieving promising results. One of our findings is that the dorsal side of human hands is found to have effective distinctive features similar to, if not better than, those available in the palmar side of human hand images. To facilitate access to our 11K Hands dataset, the dataset, the trained CNN models, and our Matlab source code are available at (
https://goo.gl/rQJndd
). |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-019-7424-8 |