Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon
Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sit...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2020-03, Vol.63 (2), p.418-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of
m
point sites in a simple
n
-gon, which improve the best known ones for
m
≤
n
/
polylog
n
. Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for
m
≤
n
/
polylog
n
. This partially answers a question posed by Mitchell in the Handbook of Computational Geometry. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-019-00063-4 |