Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2020-03, Vol.63 (2), p.418-454
Hauptverfasser: Oh, Eunjin, Ahn, Hee-Kap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n -gon, which improve the best known ones for m ≤ n / polylog n . Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for m ≤ n / polylog n . This partially answers a question posed by Mitchell in the Handbook of Computational Geometry.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-019-00063-4