Timing Characterization for RSFQ Cell Library
As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Amparo, Denis Eren Celik, Mustafa Nath, Sagnik Cerqueira, Joao P. Inamdar, Amol |
description | As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation. |
doi_str_mv | 10.1109/TASC.2019.2897317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2187965906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8633962</ieee_id><sourcerecordid>2187965906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjv-O1YRLUiVEDR3y3FtcJUmxUkP8PQ4SsVldg8zu6MPoXvACwCsnqrltlwQDGpBpBIUxAWaAWMyJwzYZdoxg1wSQq_RTd_vMYZCFmyG8iocQvuZlV8mGju4GH7NELo2813MPrar96x0TZNtQh1N_LlFV940vbs7zzmqVs9V-ZJv3tav5XKTW6LokDOPC0MxiN3Ocs9BOauSOOEBvKoNr5kn0nInJKbAhFR1UlMXhlgpajpHj9PZY-y-T64f9L47xTZ91ASkUJwpzJMLJpeNXd9H5_UxhkNqqQHrEYoeoegRij5DSZmHKROcc_9-ySlVnNA_Flpbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187965906</pqid></control><display><type>article</type><title>Timing Characterization for RSFQ Cell Library</title><source>IEEE Electronic Library (IEL)</source><creator>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</creator><creatorcontrib>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</creatorcontrib><description>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2897317</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog circuits ; Annotations ; Cell library ; Clocks ; Computer simulation ; Delays ; Flip-flops ; Hardware description languages ; Inductance ; Josephson junctions ; Libraries ; Load modeling ; Monte Carlo methods ; Parameters ; Program verification (computers) ; Simulators ; Static timing analysis ; timing back-annotation ; timing characterization</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</citedby><cites>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</cites><orcidid>0000-0002-6010-4245 ; 0000-0002-5225-952X ; 0000-0001-9153-6465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8633962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8633962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amparo, Denis</creatorcontrib><creatorcontrib>Eren Celik, Mustafa</creatorcontrib><creatorcontrib>Nath, Sagnik</creatorcontrib><creatorcontrib>Cerqueira, Joao P.</creatorcontrib><creatorcontrib>Inamdar, Amol</creatorcontrib><title>Timing Characterization for RSFQ Cell Library</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</description><subject>Analog circuits</subject><subject>Annotations</subject><subject>Cell library</subject><subject>Clocks</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Flip-flops</subject><subject>Hardware description languages</subject><subject>Inductance</subject><subject>Josephson junctions</subject><subject>Libraries</subject><subject>Load modeling</subject><subject>Monte Carlo methods</subject><subject>Parameters</subject><subject>Program verification (computers)</subject><subject>Simulators</subject><subject>Static timing analysis</subject><subject>timing back-annotation</subject><subject>timing characterization</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjv-O1YRLUiVEDR3y3FtcJUmxUkP8PQ4SsVldg8zu6MPoXvACwCsnqrltlwQDGpBpBIUxAWaAWMyJwzYZdoxg1wSQq_RTd_vMYZCFmyG8iocQvuZlV8mGju4GH7NELo2813MPrar96x0TZNtQh1N_LlFV940vbs7zzmqVs9V-ZJv3tav5XKTW6LokDOPC0MxiN3Ocs9BOauSOOEBvKoNr5kn0nInJKbAhFR1UlMXhlgpajpHj9PZY-y-T64f9L47xTZ91ASkUJwpzJMLJpeNXd9H5_UxhkNqqQHrEYoeoegRij5DSZmHKROcc_9-ySlVnNA_Flpbxg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Amparo, Denis</creator><creator>Eren Celik, Mustafa</creator><creator>Nath, Sagnik</creator><creator>Cerqueira, Joao P.</creator><creator>Inamdar, Amol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6010-4245</orcidid><orcidid>https://orcid.org/0000-0002-5225-952X</orcidid><orcidid>https://orcid.org/0000-0001-9153-6465</orcidid></search><sort><creationdate>20190801</creationdate><title>Timing Characterization for RSFQ Cell Library</title><author>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analog circuits</topic><topic>Annotations</topic><topic>Cell library</topic><topic>Clocks</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Flip-flops</topic><topic>Hardware description languages</topic><topic>Inductance</topic><topic>Josephson junctions</topic><topic>Libraries</topic><topic>Load modeling</topic><topic>Monte Carlo methods</topic><topic>Parameters</topic><topic>Program verification (computers)</topic><topic>Simulators</topic><topic>Static timing analysis</topic><topic>timing back-annotation</topic><topic>timing characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amparo, Denis</creatorcontrib><creatorcontrib>Eren Celik, Mustafa</creatorcontrib><creatorcontrib>Nath, Sagnik</creatorcontrib><creatorcontrib>Cerqueira, Joao P.</creatorcontrib><creatorcontrib>Inamdar, Amol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amparo, Denis</au><au>Eren Celik, Mustafa</au><au>Nath, Sagnik</au><au>Cerqueira, Joao P.</au><au>Inamdar, Amol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing Characterization for RSFQ Cell Library</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2897317</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6010-4245</orcidid><orcidid>https://orcid.org/0000-0002-5225-952X</orcidid><orcidid>https://orcid.org/0000-0001-9153-6465</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-9 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2187965906 |
source | IEEE Electronic Library (IEL) |
subjects | Analog circuits Annotations Cell library Clocks Computer simulation Delays Flip-flops Hardware description languages Inductance Josephson junctions Libraries Load modeling Monte Carlo methods Parameters Program verification (computers) Simulators Static timing analysis timing back-annotation timing characterization |
title | Timing Characterization for RSFQ Cell Library |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20Characterization%20for%20RSFQ%20Cell%20Library&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Amparo,%20Denis&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2897317&rft_dat=%3Cproquest_RIE%3E2187965906%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187965906&rft_id=info:pmid/&rft_ieee_id=8633962&rfr_iscdi=true |