Timing Characterization for RSFQ Cell Library

As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-9
Hauptverfasser: Amparo, Denis, Eren Celik, Mustafa, Nath, Sagnik, Cerqueira, Joao P., Inamdar, Amol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Amparo, Denis
Eren Celik, Mustafa
Nath, Sagnik
Cerqueira, Joao P.
Inamdar, Amol
description As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.
doi_str_mv 10.1109/TASC.2019.2897317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2187965906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8633962</ieee_id><sourcerecordid>2187965906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjv-O1YRLUiVEDR3y3FtcJUmxUkP8PQ4SsVldg8zu6MPoXvACwCsnqrltlwQDGpBpBIUxAWaAWMyJwzYZdoxg1wSQq_RTd_vMYZCFmyG8iocQvuZlV8mGju4GH7NELo2813MPrar96x0TZNtQh1N_LlFV940vbs7zzmqVs9V-ZJv3tav5XKTW6LokDOPC0MxiN3Ocs9BOauSOOEBvKoNr5kn0nInJKbAhFR1UlMXhlgpajpHj9PZY-y-T64f9L47xTZ91ASkUJwpzJMLJpeNXd9H5_UxhkNqqQHrEYoeoegRij5DSZmHKROcc_9-ySlVnNA_Flpbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187965906</pqid></control><display><type>article</type><title>Timing Characterization for RSFQ Cell Library</title><source>IEEE Electronic Library (IEL)</source><creator>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</creator><creatorcontrib>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</creatorcontrib><description>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2897317</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog circuits ; Annotations ; Cell library ; Clocks ; Computer simulation ; Delays ; Flip-flops ; Hardware description languages ; Inductance ; Josephson junctions ; Libraries ; Load modeling ; Monte Carlo methods ; Parameters ; Program verification (computers) ; Simulators ; Static timing analysis ; timing back-annotation ; timing characterization</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</citedby><cites>FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</cites><orcidid>0000-0002-6010-4245 ; 0000-0002-5225-952X ; 0000-0001-9153-6465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8633962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8633962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amparo, Denis</creatorcontrib><creatorcontrib>Eren Celik, Mustafa</creatorcontrib><creatorcontrib>Nath, Sagnik</creatorcontrib><creatorcontrib>Cerqueira, Joao P.</creatorcontrib><creatorcontrib>Inamdar, Amol</creatorcontrib><title>Timing Characterization for RSFQ Cell Library</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</description><subject>Analog circuits</subject><subject>Annotations</subject><subject>Cell library</subject><subject>Clocks</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Flip-flops</subject><subject>Hardware description languages</subject><subject>Inductance</subject><subject>Josephson junctions</subject><subject>Libraries</subject><subject>Load modeling</subject><subject>Monte Carlo methods</subject><subject>Parameters</subject><subject>Program verification (computers)</subject><subject>Simulators</subject><subject>Static timing analysis</subject><subject>timing back-annotation</subject><subject>timing characterization</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjv-O1YRLUiVEDR3y3FtcJUmxUkP8PQ4SsVldg8zu6MPoXvACwCsnqrltlwQDGpBpBIUxAWaAWMyJwzYZdoxg1wSQq_RTd_vMYZCFmyG8iocQvuZlV8mGju4GH7NELo2813MPrar96x0TZNtQh1N_LlFV940vbs7zzmqVs9V-ZJv3tav5XKTW6LokDOPC0MxiN3Ocs9BOauSOOEBvKoNr5kn0nInJKbAhFR1UlMXhlgpajpHj9PZY-y-T64f9L47xTZ91ASkUJwpzJMLJpeNXd9H5_UxhkNqqQHrEYoeoegRij5DSZmHKROcc_9-ySlVnNA_Flpbxg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Amparo, Denis</creator><creator>Eren Celik, Mustafa</creator><creator>Nath, Sagnik</creator><creator>Cerqueira, Joao P.</creator><creator>Inamdar, Amol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6010-4245</orcidid><orcidid>https://orcid.org/0000-0002-5225-952X</orcidid><orcidid>https://orcid.org/0000-0001-9153-6465</orcidid></search><sort><creationdate>20190801</creationdate><title>Timing Characterization for RSFQ Cell Library</title><author>Amparo, Denis ; Eren Celik, Mustafa ; Nath, Sagnik ; Cerqueira, Joao P. ; Inamdar, Amol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5f04a3017ddc6f619ec919ee7f11f9ba6b5f28c6e780315789b157ab4a2c87b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analog circuits</topic><topic>Annotations</topic><topic>Cell library</topic><topic>Clocks</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Flip-flops</topic><topic>Hardware description languages</topic><topic>Inductance</topic><topic>Josephson junctions</topic><topic>Libraries</topic><topic>Load modeling</topic><topic>Monte Carlo methods</topic><topic>Parameters</topic><topic>Program verification (computers)</topic><topic>Simulators</topic><topic>Static timing analysis</topic><topic>timing back-annotation</topic><topic>timing characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amparo, Denis</creatorcontrib><creatorcontrib>Eren Celik, Mustafa</creatorcontrib><creatorcontrib>Nath, Sagnik</creatorcontrib><creatorcontrib>Cerqueira, Joao P.</creatorcontrib><creatorcontrib>Inamdar, Amol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amparo, Denis</au><au>Eren Celik, Mustafa</au><au>Nath, Sagnik</au><au>Cerqueira, Joao P.</au><au>Inamdar, Amol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing Characterization for RSFQ Cell Library</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>As superconducting circuits grow in complexity, full transient simulation and verification at the Josephson junction level using analog circuit simulators become increasingly computationally expensive. To enable faster functional and timing verification using timing back annotation and static timing analysis, logic models of rapid single flux quantum library cells are developed using hardware description languages like Verilog together with the required timing characteristics. These include propagation delays and minimum pin-to-pin pulse arrival time separation at various process and operating corners. These timing parameters must satisfy required margins and yield using Monte Carlo simulations with statistical variations. For each library cell, these timing parameters depend not only on the adjacent cells but also on their internal states. These delay variations are driven by bias current redistribution, load inductance, and load junction critical currents. We present our methodology for extracting these timing parameters to enable timing back annotation and static timing analysis. We demonstrate our methodology with a parallel counter as a reference circuit and show that timing back annotated simulation can closely match results from full circuit simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2897317</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6010-4245</orcidid><orcidid>https://orcid.org/0000-0002-5225-952X</orcidid><orcidid>https://orcid.org/0000-0001-9153-6465</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-9
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2187965906
source IEEE Electronic Library (IEL)
subjects Analog circuits
Annotations
Cell library
Clocks
Computer simulation
Delays
Flip-flops
Hardware description languages
Inductance
Josephson junctions
Libraries
Load modeling
Monte Carlo methods
Parameters
Program verification (computers)
Simulators
Static timing analysis
timing back-annotation
timing characterization
title Timing Characterization for RSFQ Cell Library
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20Characterization%20for%20RSFQ%20Cell%20Library&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Amparo,%20Denis&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2897317&rft_dat=%3Cproquest_RIE%3E2187965906%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187965906&rft_id=info:pmid/&rft_ieee_id=8633962&rfr_iscdi=true