Improved Bohr’s inequality for locally univalent harmonic mappings

We prove several improved versions of Bohr’s inequality for the harmonic mappings of the form f=h+g¯, where h is bounded by 1 and |g′(z)|≤|h′(z)|. The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. (Kayumov and Ponnusamy, 2018) for example a term related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae 2019-01, Vol.30 (1), p.201-213
Hauptverfasser: Evdoridis, Stavros, Ponnusamy, Saminathan, Rasila, Antti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove several improved versions of Bohr’s inequality for the harmonic mappings of the form f=h+g¯, where h is bounded by 1 and |g′(z)|≤|h′(z)|. The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. (Kayumov and Ponnusamy, 2018) for example a term related to the area of the image of the disk D(0,r) under the mapping f is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.
ISSN:0019-3577
1872-6100
DOI:10.1016/j.indag.2018.09.008