Fabrication and Characterization of Cu Doped CeO2 by Hydrothermal Process for Antimicrobial Activity

Cu doped CeO2 nanopowder was synthesized by hydrothermal process at 180°C for 2~10h. The average size and distribution of the synthesized Cu doped CeO2 nanopowder was controlled by reaction times. The crystallinity of the synthesized Cu doped CeO2 nanoparticles was investigated by X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2019-02, Vol.391, p.114-119
Hauptverfasser: Choi, Yeon Bin, Son, Jeong Hoon, Bae, Dong Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu doped CeO2 nanopowder was synthesized by hydrothermal process at 180°C for 2~10h. The average size and distribution of the synthesized Cu doped CeO2 nanopowder was controlled by reaction times. The crystallinity of the synthesized Cu doped CeO2 nanoparticles was investigated by X-ray diffraction (XRD). The morphology of the synthesized Cu doped CeO2 nanoparticles was observed by FE-SEM. The specific surface area of the synthesized Cu doped CeO2 nanoparticles was measured by BET. The crystal size of the synthesized Cu doped CeO2 nanoparticles decreased with decreasing reaction times. The average size of the synthesized Cu doped CeO2 nanoparticles was below 10nm and narrow, respectively. The shape of the synthesized Cu doped CeO2 nanoparticles was spherical type. The specific surface area of the synthesized Cu doped CeO2 nanoparticles increased with decreasing reaction times. Antibacterial properties of Cu doped CeO2 were analyzed by MIC method. The synthesized Cu doped CeO2 nanopowders showed antibacterial properties against E.coli and B.sub bacteria.
ISSN:1012-0386
1662-9507
1662-9507
DOI:10.4028/www.scientific.net/DDF.391.114