Bandwidth selection for a data sharpening estimator in nonparametric regression

This paper is concerned with data-based selection of the bandwidth for a data sharpening estimator in nonparametric regression. Two kinds of bandwidths are considered: a bandwidth vector which has a different bandwidth for each covariate, and a scalar bandwidth that is common for all covariates. A p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2009-08, Vol.100 (7), p.1465-1486
Hauptverfasser: Naito, Kanta, Yoshizaki, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with data-based selection of the bandwidth for a data sharpening estimator in nonparametric regression. Two kinds of bandwidths are considered: a bandwidth vector which has a different bandwidth for each covariate, and a scalar bandwidth that is common for all covariates. A plug-in method is developed and its theoretical performance is fully investigated. The proposed plug-in method works efficiently in our simulation study.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2008.12.016