Eigenanalysis on a bivariate covariance kernel

Certain constructions of copulas can be interpreted as an eigendecomposition of a kernel. We study some properties of the eigenfunctions and their integrals of a covariance kernel related to a bivariate distribution. The covariance between functions of random variables in terms of the cumulative dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2008-11, Vol.99 (10), p.2497-2507
Hauptverfasser: Cuadras, Carles M., Cuadras, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Certain constructions of copulas can be interpreted as an eigendecomposition of a kernel. We study some properties of the eigenfunctions and their integrals of a covariance kernel related to a bivariate distribution. The covariance between functions of random variables in terms of the cumulative distribution function is used. Some bounds for the trace of the kernel and some inequalities for a continuous random variable concerning a function and its derivative are obtained. We also obtain relations to diagonal expansions and canonical correlation analysis and, as a by-product, series of constants for some particular distributions.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2008.02.039