Eigenanalysis on a bivariate covariance kernel
Certain constructions of copulas can be interpreted as an eigendecomposition of a kernel. We study some properties of the eigenfunctions and their integrals of a covariance kernel related to a bivariate distribution. The covariance between functions of random variables in terms of the cumulative dis...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2008-11, Vol.99 (10), p.2497-2507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Certain constructions of copulas can be interpreted as an eigendecomposition of a kernel. We study some properties of the eigenfunctions and their integrals of a covariance kernel related to a bivariate distribution. The covariance between functions of random variables in terms of the cumulative distribution function is used. Some bounds for the trace of the kernel and some inequalities for a continuous random variable concerning a function and its derivative are obtained. We also obtain relations to diagonal expansions and canonical correlation analysis and, as a by-product, series of constants for some particular distributions. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2008.02.039 |