Some statistical applications of Faa di Bruno

The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2006-11, Vol.97 (10), p.2131-2140
1. Verfasser: Savits, Thomas H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2140
container_issue 10
container_start_page 2131
container_title Journal of multivariate analysis
container_volume 97
creator Savits, Thomas H.
description The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.
doi_str_mv 10.1016/j.jmva.2006.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218693023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X06000340</els_id><sourcerecordid>1166714011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-9dc3cb8bca2470717f0a01eed1a107e4913637d541b007b31eedb208923fa5863</originalsourceid><addsrcrecordid>eNp9UMFq3DAQFSWFbtL-QE8mkKPdGcm2bMilXbJpICGHpNCbGMtjKrNru5J3Yf8-cjektxxmJEbvPb15QnxFyBCw_NZn_e5AmQQoM1AZAH4QK4S6SLXM1ZlYAeQ6lUX9-5M4D6GPACx0vhLp07jjJMw0uzA7S9uEpmkbL7Mbh5CMXbIhSlqX_PD7YfwsPna0Dfzl9bwQvzY3z-uf6f3j7d36-31qc41zWrdW2aZqLMlcg0bdAQEyt0gImvMaVal0W-TYAOhGLU-NhKqWqqOiKtWFuDzpTn78u-cwm37c-yF-aSRWZa1AqgiSJ5D1YwieOzN5tyN_NAhmScX0ZknFLKkYUCYuHUkPJ5Lnie0bg5kX6EDmYBTVOrZjrH9MRS5W1FQ0LTNUGF3kYP7Mu6h39eqUQkyv8zRYF_47qWQRDS8bXZ9wHGM7OPYmWMeD5dZ5trNpR_ee7RdLi4-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218693023</pqid></control><display><type>article</type><title>Some statistical applications of Faa di Bruno</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Savits, Thomas H.</creator><creatorcontrib>Savits, Thomas H.</creatorcontrib><description>The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2006.03.001</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Edgeworth expansions ; Exact sciences and technology ; Faa di Bruno ; Faa di Bruno Hermite polynomials Edgeworth expansions ; Hermite polynomials ; Mathematics ; Multivariate analysis ; Polynomials ; Probability and statistics ; Random variables ; Recursive algorithms ; Sciences and techniques of general use ; Statistics ; Studies</subject><ispartof>Journal of multivariate analysis, 2006-11, Vol.97 (10), p.2131-2140</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Nov 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-9dc3cb8bca2470717f0a01eed1a107e4913637d541b007b31eedb208923fa5863</citedby><cites>FETCH-LOGICAL-c471t-9dc3cb8bca2470717f0a01eed1a107e4913637d541b007b31eedb208923fa5863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X06000340$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18251866$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a97_3ay_3a2006_3ai_3a10_3ap_3a2131-2140.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Savits, Thomas H.</creatorcontrib><title>Some statistical applications of Faa di Bruno</title><title>Journal of multivariate analysis</title><description>The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.</description><subject>Edgeworth expansions</subject><subject>Exact sciences and technology</subject><subject>Faa di Bruno</subject><subject>Faa di Bruno Hermite polynomials Edgeworth expansions</subject><subject>Hermite polynomials</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Recursive algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UMFq3DAQFSWFbtL-QE8mkKPdGcm2bMilXbJpICGHpNCbGMtjKrNru5J3Yf8-cjektxxmJEbvPb15QnxFyBCw_NZn_e5AmQQoM1AZAH4QK4S6SLXM1ZlYAeQ6lUX9-5M4D6GPACx0vhLp07jjJMw0uzA7S9uEpmkbL7Mbh5CMXbIhSlqX_PD7YfwsPna0Dfzl9bwQvzY3z-uf6f3j7d36-31qc41zWrdW2aZqLMlcg0bdAQEyt0gImvMaVal0W-TYAOhGLU-NhKqWqqOiKtWFuDzpTn78u-cwm37c-yF-aSRWZa1AqgiSJ5D1YwieOzN5tyN_NAhmScX0ZknFLKkYUCYuHUkPJ5Lnie0bg5kX6EDmYBTVOrZjrH9MRS5W1FQ0LTNUGF3kYP7Mu6h39eqUQkyv8zRYF_47qWQRDS8bXZ9wHGM7OPYmWMeD5dZ5trNpR_ee7RdLi4-V</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Savits, Thomas H.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20061101</creationdate><title>Some statistical applications of Faa di Bruno</title><author>Savits, Thomas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-9dc3cb8bca2470717f0a01eed1a107e4913637d541b007b31eedb208923fa5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Edgeworth expansions</topic><topic>Exact sciences and technology</topic><topic>Faa di Bruno</topic><topic>Faa di Bruno Hermite polynomials Edgeworth expansions</topic><topic>Hermite polynomials</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Recursive algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savits, Thomas H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savits, Thomas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some statistical applications of Faa di Bruno</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>97</volume><issue>10</issue><spage>2131</spage><epage>2140</epage><pages>2131-2140</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2006.03.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2006-11, Vol.97 (10), p.2131-2140
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_218693023
source RePEc; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Edgeworth expansions
Exact sciences and technology
Faa di Bruno
Faa di Bruno Hermite polynomials Edgeworth expansions
Hermite polynomials
Mathematics
Multivariate analysis
Polynomials
Probability and statistics
Random variables
Recursive algorithms
Sciences and techniques of general use
Statistics
Studies
title Some statistical applications of Faa di Bruno
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20statistical%20applications%20of%20Faa%20di%20Bruno&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Savits,%20Thomas%20H.&rft.date=2006-11-01&rft.volume=97&rft.issue=10&rft.spage=2131&rft.epage=2140&rft.pages=2131-2140&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2006.03.001&rft_dat=%3Cproquest_cross%3E1166714011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218693023&rft_id=info:pmid/&rft_els_id=S0047259X06000340&rfr_iscdi=true