Some statistical applications of Faa di Bruno

The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2006-11, Vol.97 (10), p.2131-2140
1. Verfasser: Savits, Thomas H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2006.03.001