A new test for multivariate normality

We propose a new class of rotation invariant and consistent goodness-of-fit tests for multivariate distributions based on Euclidean distance between sample elements. The proposed test applies to any multivariate distribution with finite second moments. In this article we apply the new method for tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2005-03, Vol.93 (1), p.58-80
Hauptverfasser: Székely, Gábor J., Rizzo, Maria L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new class of rotation invariant and consistent goodness-of-fit tests for multivariate distributions based on Euclidean distance between sample elements. The proposed test applies to any multivariate distribution with finite second moments. In this article we apply the new method for testing multivariate normality when parameters are estimated. The resulting test is affine invariant and consistent against all fixed alternatives. A comparative Monte Carlo study suggests that our test is a powerful competitor to existing tests, and is very sensitive against heavy tailed alternatives.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2003.12.002