The bands satisfying the strong isomorphism property
The power semigroup, or global, of a semigroup S is the set P ( S ) of all nonempty subsets of S equipped with the naturally defined multiplication. A class K of semigroups is globally determined if any two semigroups of K with isomorphic globals are themselves isomorphic. A class K of semigroups is...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2019-04, Vol.98 (2), p.327-337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The power semigroup, or global, of a semigroup
S
is the set
P
(
S
) of all nonempty subsets of
S
equipped with the naturally defined multiplication. A class
K
of semigroups is globally determined if any two semigroups of
K
with isomorphic globals are themselves isomorphic. A class
K
of semigroups is said to satisfy the strong isomorphism property if for each pair
S
,
T
∈
K
and each isomorphism
ψ
from
P
(
S
) onto
P
(
T
),
ψ
(
S
¯
)
=
T
¯
, where
S
¯
=
{
{
s
}
∣
s
∈
S
}
⊆
P
(
S
)
,
T
¯
=
{
{
t
}
∣
t
∈
T
}
⊆
P
(
T
)
, and hence
S
≅
T
. In this paper we investigate classes of bands satisfying the strong isomorphism property. We provide a description of the largest subclass
K
¯
of
K
satisfying the strong isomorphism property for a globally determined class
K
of semigroups, and give some characterizations of the members of
B
¯
for class
B
of all bands. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-019-09998-9 |