Innovations algorithm asymptotics for periodically stationary time series with heavy tails

The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper we compute the asymptotic distribution for these estimates in the case where the underlying noise sequence has infinite fourth moment but finite second moment. In this ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2008, Vol.99 (1), p.94-116
Hauptverfasser: Anderson, Paul L., Kavalieris, Laimonis, Meerschaert, Mark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper we compute the asymptotic distribution for these estimates in the case where the underlying noise sequence has infinite fourth moment but finite second moment. In this case, the sample covariances on which the innovations algorithm are based are known to be asymptotically stable. The asymptotic results developed here are useful to determine which model parameters are significant. In the process, we also compute the asymptotic distributions of least squares estimates of parameters in an autoregressive model.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2007.02.005