Completeness and unbiased estimation of mean vector in the multivariate group sequential case

We consider estimation after a group sequential test about a multivariate normal mean, such as a χ 2 test or a sequential version of the Bonferroni procedure. We derive the density function of the sufficient statistics and show that the sample mean remains to be the maximum likelihood estimator but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2007-03, Vol.98 (3), p.505-516
Hauptverfasser: Liu, Aiyi, Wu, Chengqing, Yu, Kai F., Yuan, Weishi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider estimation after a group sequential test about a multivariate normal mean, such as a χ 2 test or a sequential version of the Bonferroni procedure. We derive the density function of the sufficient statistics and show that the sample mean remains to be the maximum likelihood estimator but is no longer unbiased. We propose an alternative Rao–Blackwell type unbiased estimator. We show that the family of distributions of the sufficient statistic is not complete, and there exist infinitely many unbiased estimators of the mean vector and none has uniformly minimum variance. However, when restricted to truncation-adaptable statistics, completeness holds and the Rao–Blackwell estimator has uniformly minimum variance.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2006.01.001