Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range
Mercaptoundecanoic acid capped-Ag nanoparticles (MUA-AgNPs) assembled on graphene oxide (GO), namely MUA-AgNPs-GO nanocomposite, was used for enhancing current–voltage ( I – V ) activity and stability of n-lnP based heterojunction devices. The structural, morphological and optical properties of the...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-05, Vol.48 (5), p.3169-3182 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mercaptoundecanoic acid capped-Ag nanoparticles (MUA-AgNPs) assembled on graphene oxide (GO), namely MUA-AgNPs-GO nanocomposite, was used for enhancing current–voltage (
I
–
V
) activity and stability of n-lnP based heterojunction devices. The structural, morphological and optical properties of the MUA-AgNPs-GO nanocomposite were examined by Raman spectroscopy, UV–Vis spectroscopy, transmission electron microscopy and scanning electron microscopy measurements. Besides, the Ag/MUA-AgNPs-GO/n-InP/Au-Ge heterojunction was fabricated, and working performance of the heterojunction was investigated in the temperature range of 80–320 K by steps of 20 K. The heterojunction created by the MUA-AgNPs-GO nanocomposite showed improved working performance such as better
I
–
V
characteristics, great stability and better rectifying ratio than that of our reference junction. The ideality factor and barrier height values of the junction formed with MUA-AgNPs-GO layer were found to be 1.07 eV and 0.630 eV, respectively. The experimental value of the Richardson constant was determined to be 3.82 A/cm
2
K
2
in the 80–160 K temperature range and to be 6.55 A/cm
2
K
2
in the 160–320 K temperature range. The results showed that the MUA-AgNPs-GO nanocomposite is a favorable candidate to provide modification of barrier height and to improve characteristic parameters for applications of the heterojunction devices. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-019-07088-8 |