Characterization of dependence of multidimensional Lévy processes using Lévy copulas

This paper suggests Lévy copulas in order to characterize the dependence among components of multidimensional Lévy processes. This concept parallels the notion of a copula on the level of Lévy measures. As for random vectors, a version of Sklar's theorem states that the law of a general multiva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2006-08, Vol.97 (7), p.1551-1572
Hauptverfasser: Kallsen, Jan, Tankov, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper suggests Lévy copulas in order to characterize the dependence among components of multidimensional Lévy processes. This concept parallels the notion of a copula on the level of Lévy measures. As for random vectors, a version of Sklar's theorem states that the law of a general multivariate Lévy process is obtained by combining arbitrary univariate Lévy processes with an arbitrary Lévy copula. We construct parametric families of Lévy copulas and prove a limit theorem, which indicates how to obtain the Lévy copula of a multivariate Lévy process X from the ordinary copula of the random vector X t for small t.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2005.11.001