Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity

The apple pathotype of Alternaria alternata produces the cyclic depsipeptide AM-toxin and causes Alternaria blotch of apple. Previously, we cloned AMT2 from the apple pathotype as an orthologue of AFTS1, which is required for biosynthesis of the decatrienoic acid ester AF-toxin I of the strawberry p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general plant pathology : JGPP 2008-06, Vol.74 (3), p.222-229
Hauptverfasser: Harimoto, Yoshiaki, Tanaka, Takayoshi, Kodama, Motoichiro, Yamamoto, Mikihiro, Otani, Hiroshi, Tsuge, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The apple pathotype of Alternaria alternata produces the cyclic depsipeptide AM-toxin and causes Alternaria blotch of apple. Previously, we cloned AMT2 from the apple pathotype as an orthologue of AFTS1, which is required for biosynthesis of the decatrienoic acid ester AF-toxin I of the strawberry pathotype. These genes were predicted to encode aldo-keto reductases involved in biosynthesis of a common precursor, 2-hydroxy-isovaleric acid, of AF-toxin I and AM-toxin. In this study, we analyzed the function of AMT2 in AM-toxin biosynthesis in the apple pathotype. DNA gel blot analysis of the apple pathotype strain IFO8984 with five restriction enzymes suggested that this strain has a single copy of AMT2 in the genome. However, gene disruption experiments showed that IFO8984 probably has three copies of AMT2. We made mutants having one or two copies of AMT2 disrupted. The single-copy mutants produced less AM-toxin than did the wild type and were still as pathogenic as the wild type. The two-copy mutants produced trace or undetectable amounts of AM-toxin and were markedly reduced in pathogenicity. Thus, AMT2 was verified to be required for AM-toxin biosynthesis and hence pathogenicity. The fact that the two-copy mutants have a remaining copy of AMT2 suggests that multiple copies of AMT2 are prerequisite for the pathogen to produce enough AM-toxin for full pathogenicity.
ISSN:1345-2630
1610-739X
DOI:10.1007/s10327-008-0089-1