Sudden Exposure to Solar UV-B Radiation Reduces Net CO₂ Uptake and Photosystem I Efficiency in Shade-Acclimated Tropical Tree Seedlings

Tree seedlings developing in the understory of the tropical forest have to endure short periods of high-light stress when tree-fall gaps are formed, and direct solar radiation, including substantial UV light, reaches the leaves. In experiments simulating the opening of a tree-fall gap, the response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2003-02, Vol.131 (2), p.745-752
Hauptverfasser: G. Heinrich Krause, Esther Grube, Aurelio Virgo, Winter, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tree seedlings developing in the understory of the tropical forest have to endure short periods of high-light stress when tree-fall gaps are formed, and direct solar radiation, including substantial UV light, reaches the leaves. In experiments simulating the opening of a tree-fall gap, the response of photosynthesis in leaves of shade-acclimated seedlings (Anacardium excelsum, Virola surinamensis, and Calophyllum longifolium) to exposure to direct sunlight (for 20-50 min) was investigated in Panama (9°N). To assess the effects of solar UV-B radiation (280-320 nm), the sunlight was filtered through plastic films that selectively absorbed UV-B or transmitted the complete spectrum. The results document a strong inhibition of CO2 assimilation by sun exposure. Light-limited and light-saturated rates of photosynthetic CO2 uptake by the leaves were affected, which apparently occurred independently of a simultaneous inhibition of potential photosystem (PS) II efficiency. The ambient UV-B light substantially contributed to these effects. The photochemical capacity of PSI, measured as absorbance change at 810 nm in saturating far-red light, was not significantly affected by sun exposure of the seedlings. However, a decrease in the efficiency of P700 photooxidation by far-red light was observed, which was strongly promoted by solar UV-B radiation. The decrease in PSI efficiency may result from enhanced charge recombination in the reaction center, which might represent an incipient inactivation of PSI, but contributes to thermal dissipation of excessive light energy and thereby to photoprotection.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.014076