A stochastic restricted ridge regression estimator

Groß [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64] proposed a restricted ridge regression estimator when exact restrictions are assumed to hold. When there are stochastic linear restrictions on the parameter vector, we introduce a new estimator by combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2009-09, Vol.100 (8), p.1706-1716
1. Verfasser: Özkale, M. Revan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Groß [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64] proposed a restricted ridge regression estimator when exact restrictions are assumed to hold. When there are stochastic linear restrictions on the parameter vector, we introduce a new estimator by combining ideas underlying the mixed and the ridge regression estimators under the assumption that the errors are not independent and identically distributed. Apart from [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64], we call this new estimator as the stochastic restricted ridge regression (SRRR) estimator. The performance of the SRRR estimator over the mixed estimator in respect of the variance and the mean square error matrices is examined. We also illustrate our findings with a numerical example. The shrinkage generalized least squares (GLS) and the stochastic restricted shrinkage GLS estimators are proposed.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2009.02.005