Numerical simulation of bubble growth in viscoelastic fluid with diffusion of dissolved foaming agent

Viscoelastic simulations of bubble growth in polypropylene (PP) physical foaming were performed. A multimode Phan‐Thien Tanner (PTT) model was used to analyze the dynamic growth behavior of spherically symmetric bubbles with the diffusion of a foaming agent (CO2). Changes in the dissolved foaming ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2005-09, Vol.45 (9), p.1277-1287
Hauptverfasser: Otsuki, Yasuhiko, Kanai, Toshitaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viscoelastic simulations of bubble growth in polypropylene (PP) physical foaming were performed. A multimode Phan‐Thien Tanner (PTT) model was used to analyze the dynamic growth behavior of spherically symmetric bubbles with the diffusion of a foaming agent (CO2). Changes in the dissolved foaming agent concentration in the polymer and in the strain of the polymer melt surrounding the bubbles were simulated with the Lagrangian FEM method. The simulation technique was validated by comparison with the bubble growth data, which were experimentally obtained from visual observations of the PP/CO2 batch foaming system. The simulation results demonstrated that the strain‐hardening characteristic of polymer does not strongly affect the bubble growth rate. The linear viscoelastic characteristic is more influential, and the relaxation mode around 0.01 s is the most important factor in determining the bubble growth rate during the early stage of foaming. A multivariate analysis for the simulation results was also carried out. This clarified that bubble nucleus population density, surrounding pressure, initial dissolved foaming agent concentration, and diffusion coefficient are more important factors than the viscoelastic characteristics. POLYM. ENG. SCI., 45:1277–1287, 2005. © 2005 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.20395