Evaluation of tool wear in high-speed face milling of Al/SiC metal matrix composites
In recent years, a new generation of composite materials has been introduced as metal matrix composites (MMCs) in order to simultaneously provide higher strength and stiffness. Industrial interests resulted in deep investigations and researches on machinability of MMCs and especially in the field of...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-03, Vol.41 (3), p.1-10, Article 146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, a new generation of composite materials has been introduced as metal matrix composites (MMCs) in order to simultaneously provide higher strength and stiffness. Industrial interests resulted in deep investigations and researches on machinability of MMCs and especially in the field of high-speed machining. High-speed machining processes offer a higher machining efficiency and reduced cost of the process, which made them the process of interest in many manufacturing industries. However, matrix reinforcement by addition of hard particle phases to the MMCs significantly increases machining difficulty, tool wear, surface quality deterioration and overall fabrication costs. In the current research, the cutting speed, feed rate, depth of cut, presence of cryogenic coolant and their effect on the tool wear of high-speed machining of Al/SiC MMC reinforced with 15 wt% SiC particles have been investigated. The results have shown that silicon carbide particles in the aluminum matrix cause a severe tool wear. However, the severity of tool wear has decreased by applying a cryogenic cooling. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-019-1649-3 |