Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems
Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gerlach, Raphael Koltai, Péter Dellnitz, Michael |
description | Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometry we use diffusion mapst o find intrinsic coordinates. We illustrate our results on the unstable manifold of the one-dimensional Kuramoto--Sivashinsky equation, as well as for the attractor of the Mackey-Glass delay differential equation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2185999729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185999729</sourcerecordid><originalsourceid>FETCH-proquest_journals_21859997293</originalsourceid><addsrcrecordid>eNqNy8ELgjAYBfARBEn5Pww6Czoz3TmKztFdhn7aJ26rfVPwv29Bxw6d3oP3eysWiTzPkuogxIbFREOapuJYiqLII2ZvMIMa0fTcP4Cj8Q4NYcN7sBq8W7jteIcGPfAWNYTNGjUGOCuHynhO4OmD0Pxg7WKUxiY0WsiDph1bd2okiL-5ZfvL-X66Jk9nXxOQrwc7uXClWmRVIaUshcz_U29ghkwl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185999729</pqid></control><display><type>article</type><title>Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Gerlach, Raphael ; Koltai, Péter ; Dellnitz, Michael</creator><creatorcontrib>Gerlach, Raphael ; Koltai, Péter ; Dellnitz, Michael</creatorcontrib><description>Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometry we use diffusion mapst o find intrinsic coordinates. We illustrate our results on the unstable manifold of the one-dimensional Kuramoto--Sivashinsky equation, as well as for the attractor of the Mackey-Glass delay differential equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Attractors (mathematics) ; Chaos theory ; Continuation methods ; Differential equations ; Dynamical systems ; Embedded systems ; Manifolds (mathematics)</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gerlach, Raphael</creatorcontrib><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Dellnitz, Michael</creatorcontrib><title>Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems</title><title>arXiv.org</title><description>Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometry we use diffusion mapst o find intrinsic coordinates. We illustrate our results on the unstable manifold of the one-dimensional Kuramoto--Sivashinsky equation, as well as for the attractor of the Mackey-Glass delay differential equation.</description><subject>Approximation</subject><subject>Attractors (mathematics)</subject><subject>Chaos theory</subject><subject>Continuation methods</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Embedded systems</subject><subject>Manifolds (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy8ELgjAYBfARBEn5Pww6Czoz3TmKztFdhn7aJ26rfVPwv29Bxw6d3oP3eysWiTzPkuogxIbFREOapuJYiqLII2ZvMIMa0fTcP4Cj8Q4NYcN7sBq8W7jteIcGPfAWNYTNGjUGOCuHynhO4OmD0Pxg7WKUxiY0WsiDph1bd2okiL-5ZfvL-X66Jk9nXxOQrwc7uXClWmRVIaUshcz_U29ghkwl</recordid><startdate>20190223</startdate><enddate>20190223</enddate><creator>Gerlach, Raphael</creator><creator>Koltai, Péter</creator><creator>Dellnitz, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190223</creationdate><title>Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems</title><author>Gerlach, Raphael ; Koltai, Péter ; Dellnitz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21859997293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Attractors (mathematics)</topic><topic>Chaos theory</topic><topic>Continuation methods</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Embedded systems</topic><topic>Manifolds (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gerlach, Raphael</creatorcontrib><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Dellnitz, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerlach, Raphael</au><au>Koltai, Péter</au><au>Dellnitz, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems</atitle><jtitle>arXiv.org</jtitle><date>2019-02-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometry we use diffusion mapst o find intrinsic coordinates. We illustrate our results on the unstable manifold of the one-dimensional Kuramoto--Sivashinsky equation, as well as for the attractor of the Mackey-Glass delay differential equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2185999729 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Approximation Attractors (mathematics) Chaos theory Continuation methods Differential equations Dynamical systems Embedded systems Manifolds (mathematics) |
title | Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Revealing%20the%20intrinsic%20geometry%20of%20finite%20dimensional%20invariant%20sets%20of%20infinite%20dimensional%20dynamical%20systems&rft.jtitle=arXiv.org&rft.au=Gerlach,%20Raphael&rft.date=2019-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2185999729%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185999729&rft_id=info:pmid/&rfr_iscdi=true |