Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems

Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Gerlach, Raphael, Koltai, Péter, Dellnitz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Embedding techniques allow the approximations of finite dimensional attractors and manifolds of infinite dimensional dynamical systems via subdivision and continuation methods. These approximations give a topological one-to-one image of the original set. In order to additionally reveal their geometry we use diffusion mapst o find intrinsic coordinates. We illustrate our results on the unstable manifold of the one-dimensional Kuramoto--Sivashinsky equation, as well as for the attractor of the Mackey-Glass delay differential equation.
ISSN:2331-8422