Tensile properties of linear low density polyethylene (LLDPE) blown films

Various linear low‐density polyethylene (LLDPE; density ∼ (0.920 g/cm3)) resins that encompass those polymerized using Ziegler‐Natta, metallocene, and chromium oxide based catalysts were blown into film at similar process conditions, and the tensile properties of the resulting films were investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2000-11, Vol.40 (11), p.2385-2396
Hauptverfasser: Krishnaswamy, Rajendra K., Lamborn, Mark J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various linear low‐density polyethylene (LLDPE; density ∼ (0.920 g/cm3)) resins that encompass those polymerized using Ziegler‐Natta, metallocene, and chromium oxide based catalysts were blown into film at similar process conditions, and the tensile properties of the resulting films were investigated in relation to their orientation characteristics. The tensile properties of the subject blown films were observed to be significantly different from those of isotropic/un‐oriented polyethylene specimens of similar density (crystallinity). Further, the tensile properties were different in the machine and transverse directions. These were explained in terms of the orientation and lamellar organization characteristics of the LLDPE blown films. Investigation of the temperature dependence (between −50°C and +50°C) of these tensile properties indicated an increase in modulus, yield stress and break stress with decreasing temperature pointing to the possible role played by the decreased mobility of the non‐crystalline phase at lower temperatures. Excellent correlation between the Elmendorf tear properties of the LLDPE blown films and their tensile yield characteristics was observed. This added substantial credibility to previous hypotheses that specimen stretching plays a significant role in Elmendorf tear tests and further supported the previously identified structural features and microstructural deformation mechanisms that are deemed responsible for the discernment of LLDPE blown film tear resistance.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.11370