A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems
We investigate how spectral properties of a measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T)$ are reflected in the multiple ergodic averages arising from that system. For certain sequences $a:\mathbb{N}\rightarrow \mathbb{N}$ , we provide natural conditions on the spectrum $\uni...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2019-04, Vol.39 (4), p.1042-1070 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate how spectral properties of a measure-preserving system
$(X,{\mathcal{B}},\unicode[STIX]{x1D707},T)$
are reflected in the multiple ergodic averages arising from that system. For certain sequences
$a:\mathbb{N}\rightarrow \mathbb{N}$
, we provide natural conditions on the spectrum
$\unicode[STIX]{x1D70E}(T)$
such that, for all
$f_{1},\ldots ,f_{k}\in L^{\infty }$
,
$$\begin{eqnarray}\lim _{N\rightarrow \infty }\frac{1}{N}\mathop{\sum }_{n=1}^{N}\mathop{\prod }_{j=1}^{k}T^{ja(n)}f_{j}=\lim _{N\rightarrow \infty }\frac{1}{N}\mathop{\sum }_{n=1}^{N}\mathop{\prod }_{j=1}^{k}T^{jn}f_{j}\end{eqnarray}$$
in
$L^{2}$
-norm. In particular, our results apply to infinite arithmetic progressions,
$a(n)=qn+r$
, Beatty sequences,
$a(n)=\lfloor \unicode[STIX]{x1D703}n+\unicode[STIX]{x1D6FE}\rfloor$
, the sequence of squarefree numbers,
$a(n)=q_{n}$
, and the sequence of prime numbers,
$a(n)=p_{n}$
. We also obtain a new refinement of Szemerédi’s theorem via Furstenberg’s correspondence principle. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2017.61 |