Parameter estimation for random sampled Regression Model with Long Memory Noise

In this article, we present the least squares estimator for the drift parameter in a linear regression model driven by the increment of a fractional Brownian motion sampled at random times. For two different random times, Jittered and renewal process sampling, consistency of the estimator is proven....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Araya, Héctor, Bahamonde, Natalia, Lisandro Fermín, Roa, Tania, Torres, Soledad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we present the least squares estimator for the drift parameter in a linear regression model driven by the increment of a fractional Brownian motion sampled at random times. For two different random times, Jittered and renewal process sampling, consistency of the estimator is proven. A simulation study is provided to illustrate the performance of the estimator under different values of the Hurst parameter H.
ISSN:2331-8422