Parameter estimation for random sampled Regression Model with Long Memory Noise
In this article, we present the least squares estimator for the drift parameter in a linear regression model driven by the increment of a fractional Brownian motion sampled at random times. For two different random times, Jittered and renewal process sampling, consistency of the estimator is proven....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we present the least squares estimator for the drift parameter in a linear regression model driven by the increment of a fractional Brownian motion sampled at random times. For two different random times, Jittered and renewal process sampling, consistency of the estimator is proven. A simulation study is provided to illustrate the performance of the estimator under different values of the Hurst parameter H. |
---|---|
ISSN: | 2331-8422 |