ON PROJECTIVE MODULES OVER FINITE QUANTUM GROUPS
Let D be the Drinfeld double of the bosonization V( V )k G of a finite-dimensional Nichols algebra V( V ) over a finite group G . It is known that the simple D -modules are parametrized by the simple modules over D ( G ), the Drinfeld double of G . This parametrization can be obtained by considering...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2019-03, Vol.24 (1), p.279-299 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
D
be the Drinfeld double of the bosonization V(
V
)k
G
of a finite-dimensional Nichols algebra V(
V
) over a finite group
G
. It is known that the simple
D
-modules are parametrized by the simple modules over
D
(
G
), the Drinfeld double of
G
. This parametrization can be obtained by considering the head L(λ) of the Verma module M(λ) for every simple
D
(
G
)-module λ. In the present work, we show that the projective
D
-modules are filtered by Verma modules and the BGG Reciprocity [P(
μ
): M(λ)] = [M(λ): L(
μ
)] holds for the projective cover P(
μ
) of L(
μ
). We use graded characters to prove the BGG Reciprocity and obtain a graded version of it. As a by-product we show that a Verma module is simple if and only if it is projective. We also describe the tensor product between projective modules. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-017-9469-y |