ON PROJECTIVE MODULES OVER FINITE QUANTUM GROUPS

Let D be the Drinfeld double of the bosonization V( V )k G of a finite-dimensional Nichols algebra V( V ) over a finite group G . It is known that the simple D -modules are parametrized by the simple modules over D ( G ), the Drinfeld double of G . This parametrization can be obtained by considering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2019-03, Vol.24 (1), p.279-299
1. Verfasser: VAY, CRISTIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D be the Drinfeld double of the bosonization V( V )k G of a finite-dimensional Nichols algebra V( V ) over a finite group G . It is known that the simple D -modules are parametrized by the simple modules over D ( G ), the Drinfeld double of G . This parametrization can be obtained by considering the head L(λ) of the Verma module M(λ) for every simple D ( G )-module λ. In the present work, we show that the projective D -modules are filtered by Verma modules and the BGG Reciprocity [P( μ ): M(λ)] = [M(λ): L( μ )] holds for the projective cover P( μ ) of L( μ ). We use graded characters to prove the BGG Reciprocity and obtain a graded version of it. As a by-product we show that a Verma module is simple if and only if it is projective. We also describe the tensor product between projective modules.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-017-9469-y