Approximation By Bandlimited Functions, Generalized K-Functionals and Generalized Moduli of Smoothness

We study properties of generalized K -functionals and generalized moduli of smoothness in L p (ℝ) spaces with 1 ≤ p < ∞ as well as in the space C (ℝ) of uniformly continuous and bounded functions. We obtain direct Jackson-type estimates and inverse Bernstein-type estimates. We show the equivalenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2019-03, Vol.45 (1), p.1-24
Hauptverfasser: Artamonov, S., Runovski, K., Schmeisser, H.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study properties of generalized K -functionals and generalized moduli of smoothness in L p (ℝ) spaces with 1 ≤ p < ∞ as well as in the space C (ℝ) of uniformly continuous and bounded functions. We obtain direct Jackson-type estimates and inverse Bernstein-type estimates. We show the equivalence between approximation error of convolution integrals generated by an arbitrary generator with compact support, generalized K -functionals generated by homogeneous functions and generalized moduli of smoothness. Our approach covers classical approximation methods, K -functionals related to fractional derivatives and fractional moduli of smoothness.
ISSN:0133-3852
1588-273X
DOI:10.1007/s10476-018-0302-1