Approximation By Bandlimited Functions, Generalized K-Functionals and Generalized Moduli of Smoothness
We study properties of generalized K -functionals and generalized moduli of smoothness in L p (ℝ) spaces with 1 ≤ p < ∞ as well as in the space C (ℝ) of uniformly continuous and bounded functions. We obtain direct Jackson-type estimates and inverse Bernstein-type estimates. We show the equivalenc...
Gespeichert in:
Veröffentlicht in: | Analysis mathematica (Budapest) 2019-03, Vol.45 (1), p.1-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study properties of generalized
K
-functionals and generalized moduli of smoothness in
L
p
(ℝ) spaces with 1 ≤
p
< ∞ as well as in the space
C
(ℝ) of uniformly continuous and bounded functions. We obtain direct Jackson-type estimates and inverse Bernstein-type estimates. We show the equivalence between approximation error of convolution integrals generated by an arbitrary generator with compact support, generalized
K
-functionals generated by homogeneous functions and generalized moduli of smoothness. Our approach covers classical approximation methods,
K
-functionals related to fractional derivatives and fractional moduli of smoothness. |
---|---|
ISSN: | 0133-3852 1588-273X |
DOI: | 10.1007/s10476-018-0302-1 |